Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors.
نویسندگان
چکیده
The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, and a "Venus flytrap" model for the glycine binding site has been suggested by analogy with bacterial periplasmic amino acid binding proteins. By analysis of 10 mutant NMDA receptors, we now show that residues on the NR2A subunit control glutamate potency in recombinant NR1/NR2A receptors, without affecting glycine potency. Furthermore, we provide evidence that, at least for some mutated residues, the reduced potency of glutamate cannot be explained by alteration of gating but has to be caused primarily by impairing the binding of the agonist to the resting state of the receptor. One NR2A mutant, NR2A(T671A), had an EC50 for glutamate 1000-fold greater than wild type and a 255-fold reduced affinity for APV, yet it had single-channel openings very similar to those of wild type. Therefore we propose that the glutamate binding site is located on NR2 subunits and (taking our data together with previous work) is not on the NR1 subunit. Our data further imply that each NMDA receptor subunit possesses a binding site for an agonist (glutamate or glycine).
منابع مشابه
Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors.
The four N-methyl-d-aspartate (NMDA) receptor NR2 subunits (NR2A-D) have different developmental, anatomical, and functional profiles that allow them to serve different roles in normal and neuropathological situations. Identification of subunit-selective NMDA receptor agonists, antagonists, or modulators could prove to be both valuable pharmacological tools as well as potential new therapeutic ...
متن کاملStructural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling.
We have used site-directed mutagenesis of amino acids located within the S1 and S2 ligand binding domains of the NR2A N-methyl-D-aspartate (NMDA) receptor subunit to explore the nature of ligand binding. Wild-type or mutated NR1/NR2A NMDA receptors were expressed in Xenopus laevis oocytes and studied using two electrode voltage clamp. We investigated the effects of mutations in the S1 and S2 re...
متن کاملFunctional and pharmacological differences between recombinant N-methyl-D-aspartate receptors.
N-methyl-D-aspartic acid (NMDA) receptors transiently transfected into mammalian HEK-293 cells were characterized with subunit-specific antibodies and electrophysiological recordings. Deactivation time course recorded in response to fast-glutamate pulses were studied in isolated and lifted cells, as well as in outside-out membrane patches excised from cells expressing recombinant NR1 subunits i...
متن کاملModulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes.
Heteromeric NMDARs are composed of coagonist glycine-binding NR1 subunits and glutamate-binding NR2 subunits. The majority of functional NMDARs in the mammalian central nervous system (CNS) contain two NR1 subunits and two NR2 subunits of which there are four types (A-D). We show that the potency of a variety of endogenous and synthetic glycine-site coagonists varies between recombinant NMDARs ...
متن کاملEquilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission.
We have quantified the effects of the N-methyl-d-aspartate (NMDA) receptor antagonist (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) at rat recombinant N-methyl-D-aspartate receptor (NR)1/NR2A and NR1/NR2B NMDA receptors expressed in Xenopus laevis oocytes. We observed no difference in the steady-state levels of inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1998